
1

A word of introduction:

As a Dapp CTO or Lead Developer, you've got no time for nonsense. We
get it. In the dynamic landscape of Dapp development, ensuring security
can often feel like navigating a minefield.

That's why we've created the NO BULLSH*T Security Guide. This
forthcoming resource cuts straight to the chase, delivering practical,
effective security strategies without the fluff.

Security is much more than audits, security contests or bug bounty
programs. We want to equip you with the knowledge necessary to
introduce a security centric approach.

2

The purpose of this guide is:
● giving you complete knowledge and understanding of the currently

available options and tools to increase security
● providing practical examples of how to introduce them in the

organization
● focus on practical aspects and implementation of knowledge in

small, simple steps

Why do we know what we say and you can trust us?
● we spent over 6 years in traditional security, where we worked for

international fintech and the largest Polish banks
● in 2019, we created the Smart Contract Security Verification

Standard, which is the most comprehensive checklist for Solidity
contracts to date

● we work with projects like FujiDAO, Enjin, Tellor, DIVA, Volmex Finance
and our clients keep coming back

● there is no other guide like this one, so you have no choice anyway

Thank you!
We would like to thank all CTOs, Developers and friends from the security
community for their feedback, tips and belief in the value of this project.

3

BUILDING SECURE TEAMS...5
Threat Modeling...7
Peer Review.. 9
Policies and Dependencies.. 11
Security Champions.. 13
Security Resources and Education... 15
Phishing Campaign Trainings.. 17
Security Aware Culture.. 19

SECURITY SERVICES AT YOUR DISPOSAL.. 24
Security Consultations.. 26
Smart Contract Security Review
by Professional Company.. 28
Security Contests... 31
Smart Contract Security Review
by Solo Auditors...34
Bug Bounties... 36
Security Insurance (post audit)...39
Formal Verification.. 43
Smart Contract Monitoring... 46

INCREASING EFFICIENCY...52
Audit Readiness Checklist..54
Due Diligence... 56
Maximizing the Use of Audit Reports... 58
Security Patterns to Enforce..60
Automatic Tools..62
Common Smart Contract Vulnerabilities.. 78
Smart Contract Security Verification Standard.. 98
Secure Protocol Upgrades... 103

4

BUILDING SECURE TEAMS

5

In this chapter, we focus on options and techniques aimed at
your team.

Find out what should be done to increase interest in security,
minimize the costs of fixes and the number of vulnerabilities
found by auditors.

6

Threat Modeling

DESCRIPTION:
Threat modeling is a proactive approach to identifying, understanding, and
managing potential security threats. You pick apart your system, find where it
could break, and plan how to stop that. It's about keeping your system tough
by tackling risks head-on before they turn into real problems.

GOAL:
Writing code with preserved security awareness

PROS:
● Reduced number of vulnerabilities in the code
● Save time and money spent on fixes

CONS:
● Additional development effort (Big session 3-9 hrs & 3-5 ppl, Small

session 5-45 min & 1-3 ppl)

WHEN:
● Big session - before major change or initial architecture design
● Small session - before any change in the code that affects the logic

7

ACTIONS TO IMPLEMENT:
Map Your Territory: Sketch how data flows in your dApp. Include
everything - user interfaces, contract functions, external calls. Know your
playing field.

Spot What's Valuable: What does your smart contract protect? User
data, tokens, private keys? Find out what's at stake.

Spot the Weak Spots: Look at your map. Where could things go wrong?
Consider common screw-ups like reentrancy attacks or front-running.
Figure out who would want to mess with your system, and how they'd
do it.

Get Your Priorities Straight: Some threats are scarier than others. Figure
out which ones could hurt you the most and deal with them first. This
might mean fixing your code, adding extra security layers, or changing
your system's layout.

Keep It Up: Don't rest easy. Your project changes, new threats pop up.
Regularly revisit your threat model, adjust your map, reassess the risks,
toughen up your defenses. Stay alert.

READ MORE:
Threat Modeling for Smart Contracts: Best Step-by-Step Guide
ChatGPT-driven threat modeling for smart contracts
OWASP Threat modeling cheat sheet

8

Peer Review

DESCRIPTION:
Peer review is when you get your team to scrutinize each other's smart
contract code. They're on the hunt for security gaps or bugs that slipped
through. It's your secret weapon for catching errors early, keeping your smart
contracts solid, and saving you from security headaches down the line.

GOAL:
Improving code quality and catching repetitive bugs

PROS:
● Increases team knowledge
● Very little extra time per session

CONS:
● It takes a while before it brings the right results
● Requires maintaining and updating the knowledge base

WHEN:
Points you specify e.g. before major release, every week on Friday

ACTIONS TO IMPLEMENT:

Set the Rules: Make clear what you're looking for in the review. Bugs, gas
optimizations, code clarity - define the targets.

Pick Your Team: Get the right eyes on each piece of code. Mix of skills,
mix of perspectives. It's not just about finding problems, it's about
learning from each other.

9

Keep it Regular: Make code reviews a routine, not a last-minute
scramble. After each major piece of work, or at set times - find what
works for your team.

Make it Constructive: This isn't about pointing fingers. It's about
improving the code and the coders. Encourage feedback, don't punish
mistakes.

Use the Feedback: Found a common mistake? Turn it into a learning
moment. Use the findings to improve your coding standards and
practices. Expand knowledge base and peer review checklists. They are
pointless if you don't act on them.

READ MORE:
5 code review best practices
Google Code Review Developer Guide
SMARTBEAR Best Practices for Code Review

10

https://www.atlassian.com/blog/add-ons/code-review-best-practices
https://google.github.io/eng-practices/review/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

Policies and Dependencies

DESCRIPTION:
Policies and dependencies are the rules of the game and the building blocks
your smart contract relies on. Policies set the standards for how your team
codes and checks for security. Dependencies, like libraries or external contracts,
can be a weak link, so you need to know what you're using, keep them
up-to-date, and check they're secure.

GOAL:
Reduce chaos and stay in control

PROS:
● The rules are clear and everyone knows what to do

CONS:
● You also need to monitor how well they are enforced
● Updates sometimes lead to time-consuming rework

WHEN:
The sooner the better, and then regularly

ACTIONS TO IMPLEMENT:
Code Quality Policy: Set a high bar for your code. It should be clean,
readable, and well-documented. This isn't just about looking good, messy
code hides bugs and security risks.

Testing Policy: Make testing non-negotiable. Unit tests, integration tests,
basic fuzzing. Catch problems before they go live. Automation is your
friend here, integrate semgrep and slither with additional detectors.

Security Review Policy: Code should be reviewed with a security lens. If it
hasn't been reviewed, it doesn't get deployed. Period.

11

Dependency Policy: Know what you're using and why. Only use trusted,
well-vetted libraries and external contracts. Regularly update and check
them for vulnerabilities. Dependency check is your friend here.

Incident Response Policy: Have a plan for when things go wrong because
one day they might. How you respond to a security incident can be the
difference between a hiccup and a disaster. Keep it updated, make sure
your team knows it and it was practiced.

Secure Upgrade Policy: Changing your smart contract isn't as simple as
pushing an update. You need a strategy for upgrades that maintains
security and trust. Use upgradeable contracts wisely. Test the whole
system thoroughly in a testnet/local environment first, and always
review changes for security impacts. It's not just about adding new
features, it's about keeping the old ones safe.

READ MORE:
G2: Policies and procedures
White hack policy
SAFU standard proposition
Yearn Finance Emergency Procedures
ToB - Incident Response Recommendations

12

https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x102-G2-Policies-procedures.md
https://composable-security.com/blog/white-hack-policy/
https://jumpcrypto.com/writing/safu-creating-a-standard-for-whitehats/
https://docs.yearn.finance/developers/v2/EMERGENCY#emergency-checklist
https://secure-contracts.com/development-guidelines/incident_response.html#incident-response-recommendations

Security Champions

DESCRIPTION:
Security Champions are your team's defensive linemen. They're the ones with
the deep knowledge of your smart contract's security, ready to tackle issues
and train your squad. They keep your team's security game sharp, foster a
security-first mindset, and are your first line of defense against security
threats.

GOAL:
Having internal go-to persons who handle security topics

PROS:
● They'll take a good chunk of work away from you
● More people will share your desire to secure the project

CONS:
● Development may slow down temporarily
● It takes time and some investments to start showing results

WHEN:
After a successful release and after the growth of the team

ACTIONS TO IMPLEMENT:
Pick Your Champions: Choose a few folks from your team who have a
knack for security. They should be keen to dive deeper and share their
knowledge.

Train Them Up: Invest in their security skills. Workshops, courses,
certifications - make them the experts.

13

Give Them Time: Let them focus on security. This isn't a side gig, it needs
dedicated time. They're your security radar, catching threats before they
get serious.

Make Them Teachers: Champions should spread the security love.
Regular team sessions, one-on-ones, code reviews - they should be
lifting the whole team's game.

Listen to Them: They're not just there for show. If they see a problem, or
suggest an improvement, take it seriously. They're your canary in the
coal mine.

READ MORE:
OWASP - Security Champions Playbook

14

https://github.com/c0rdis/security-champions-playbook

Security Resources and Education

DESCRIPTION:
Security Resources and Education means keeping your team clued up and
ready. It's about fostering a culture of continuous learning, accumulating
knowledge over time and feeding them the latest info. It's a never-ending
process - the more your team learns, the tougher your smart contracts get.

GOAL:
Increasing security awareness and staying up-to-date

PROS:
● Low cost and great effect
● Source of knowledge for new employees and great input for peer reviews

CONS:
● Requires regularity

WHEN:
Now

ACTIONS TO IMPLEMENT:
Find the Good Stuff: Sniff out the best resources - webinars, courses,
tools, insightful blogs. It's about learning the right things, not just
anything. Start with the Block Threat Intelligence Hacks section and of
course our blog.

Create an Internal Knowledge Base: Build your own library of lessons
learned, especially past bugs and how you squashed them. This isn't just
a resource, it's your team's collective memory. It helps you avoid
repeating mistakes and boosts your problem-solving power.

15

Make it Accessible: Keep all resources, both external and internal, in a
place your team can always reach. A shared drive, a wiki - make it easy
to learn.

Set Aside Time: Learning isn't an extra, it's part of the job. Give your
team regular time to update their knowledge. Remember, an hour spent
learning can save days of debugging.

Share and Discuss: Learning shouldn't be a solo journey. Encourage your
team to share their new insights. Regular chats about new findings
keeps everyone in the loop and sparks ideas.

READ MORE:
Composable Security Blog
Blockchain Threat Intelligence
Defi Security Summit

16

https://composable-security.com/blog/
https://newsletter.blockthreat.io/
https://defisecuritysummit.org/

Phishing Campaign Trainings

DESCRIPTION:
No matter how good your code is, humans can always be the weak link.
Phishing campaign training is about arming individuals with the knowledge and
skills to spot and thwart phishing attacks. It involves realistic simulations of
phishing attempts, teaching people how to detect suspicious emails, links, or
messages and take effective action. This training is a practical defense against
phishing threats, empowering individuals to protect themselves and their
organizations.

GOAL:
Increasing awareness of phishing attacks among the team

PROS:
● Increasing awareness and reducing the success rate of phishing attacks
● There are ready-made free tools to help with increasing awareness of

phishing

CONS:
● Requires constant repetition and offers no guarantees
● Real attempts at conducting a controlled attack require the involvement

of a third party company.

WHEN:
Get started with education and free resources ASAP

ACTIONS TO IMPLEMENT:
Assessment of Vulnerabilities: Begin by assessing the specific phishing
risks and vulnerabilities within your smart contract project. Identify

17

potential entry points for phishing attacks, such as communication
channels, email systems, or shared documents.

Tailored Training Plan: Develop a customized phishing training program
that addresses the unique needs and risks of your project. This plan
should include simulated phishing campaigns, interactive workshops, and
educational materials that resonate with your team's roles and
responsibilities.

Simulated Phishing Exercises: Conduct realistic phishing simulations to
expose team members to phishing attempts. These exercises should
replicate common tactics used by attackers. Track how team members
respond and provide immediate feedback and guidance on best
practices.

Continuous Education: Implement an ongoing education strategy.
Regularly update the training materials and simulations to reflect
evolving phishing techniques and threats. Encourage team members to
stay informed about the latest phishing trends and share this knowledge
within the organization.

Reporting and Incident Response: Establish clear reporting procedures
for suspected phishing attempts. Ensure that team members know how
and where to report such incidents promptly. Develop a robust incident
response plan to investigate and mitigate any successful phishing
attacks swiftly.

Introduce anti-phishing security measures: Use two-factor
authentication, establish verification process for key operations such as
face-to-face verification / pgp-signed message. Utilize the filtering
system and minimize exposure for non-essential members.

READ MORE::
FREE Phishing quiz from Google
Phishing Resources (Free tools, webinars)
How to recognize and avoid phishing attacks

If you need help or would like to conduct an external phishing attack on your
organization, please contact us and we will help you organize it.

18

https://phishingquiz.withgoogle.com/
https://www.phishing.org/phishing-resources
https://www.hoxhunt.com/blog/how-to-recognize-and-avoid-phishing-attacks

Security Aware Culture
DESCRIPTION:
A Security Aware Culture creates a team mindset where security is everyone's
responsibility. It promotes constant vigilance, knowledge sharing, and proactive
measures to safeguard the smart contract project. Learn a few techniques that
allow you to work with your team faster and more effectively in this context.

TECHNIQUES:

Get to Know Your Team Fast: Utilize the "Mendeleev" technique for quick
introductions among team members, fostering rapport and camaraderie. This
technique promotes swift bonding and collaboration among team members.

Instead of asking to introduce themselves, ask them to tell you what
elements from the Mendeleev table they would use to describe
themselves and why.

Start with yourself.

Example:

Person 1
"Hey there, if I had to compare my work style to an element, it might be Gold.
Not because I think I'm flashy, but because I love to think outside the box,
coming up with fresh ideas and approaches. Just as Gold is versatile in its uses,
I'm always open to trying new things and finding unique solutions."

Context: This person often brings new perspectives to discussions and projects.
They're the one who's excited about exploring new avenues and isn't hesitant
about suggesting a different approach if it might lead to a better outcome.

Person 2

19

"Hi, if I were to pick an element that reflects my approach, I'd probably go with
Iron. Not in the 'strong as iron' sense, but more about being steady and
consistent. I like to dive deep into details, ensure that everything is on track,
and that we're building on a solid foundation."

Context: This individual values thoroughness and precision. They're the kind of
person who double-checks everything, asks clarifying questions, and wants to
make sure that all bases are covered before moving forward.

Thanks to the fact that you created the space, people described themselves as
they see themselves. After a few sentences, you know exactly what people will
want to pursue and in what matters you can rely on them.

Need an idea? - contact Person 1. Do you want to be sure that something will
be thoroughly checked? Select Person 2.

No Stupid Questions: Cultivate an inclusive atmosphere where team members
feel comfortable asking any security-related question without hesitation.
Emphasize that seeking clarity and advice is vital for continuous learning and
improving security practices.

No blame or shame for such questions. Do not allow any team member
to do this.

Set an example, ask questions to the team and show that you don't
know everything either.

Share What You Learn: Conduct regular security-focused meetings to discuss
ongoing initiatives, recent incidents, and updates on best practices. These
meetings serve as a platform for collaborative problem-solving and staying
informed on security matters.

Set aside a specific day and time each month for team discussions about
recent security challenges, insights, or news

20

Plan hands-on security workshops or bring in experts for team training
sessions. Encourage team members to lead sessions on topics they're
knowledgeable about.

Meetings should not be mandatory, but people who engage in them
should be noticed.

Values Visualization: Put security as one of the core values of your team. When
making important decisions, visualize how you do it. Emphasize that none of
the selected values is omitted in favor of the others. This reinforces the
importance of security in the team's mindset.

Use geometric figures for representing values to develop independence
among team members in making the right decisions

Example:

Let's look at the line with two values: Efficiency and Security.

21

If we have such values, then facing the choice of whether to do something
quickly or safely - we will choose the third option - as soon as possible without
compromising on safety.

Let's look at a triangle with three values: Security, Money and What users
want.

Users suggested 2 features. One is to add a new pool with tokens that many
people want to trade, and the other is to change the architecture to a more
trendy one. If we were only guided by the value - What users want, we would
implement both features. Driven by What users want in conjunction with
Money, we know that we should start by adding a new pool, because it will
potentially bring us more profits. By adding Security on top of the previous two,
we know that we can give users what they want as long as it will be profitable
and will not expose anyone to loss.

Security Metrics and Recognition: Define and track security metrics to measure
the team's progress in improving security practices. Recognize and reward
team members who consistently contribute to enhancing security or identifying
critical vulnerabilities. Publicly acknowledging their efforts motivates others to
embrace a security-first mindset.

Prepare a dashboard with key parameters (such as: the number of
issues detected during peer review and audit, their impact on risk,
number of internal publications on security, time spent on fixes).

Complete them regularly and share progress with your team.

If you reach a stage where you clearly save a lot of time by minimizing
mistakes - spend it on something that will reward the team's efforts.

22

23

SECURITY SERVICES AT YOUR DISPOSAL

24

In this chapter, we focus on the options available on the
market that you can use to expand your arsenal.

Find out about available services, examples of providers, and
how they differ from each other.

25

Security Consultations

DESCRIPTION:
Security Consultation is about seeking expert guidance on smart contract
security. It's getting an outside perspective to identify blind spots and uncover
potential vulnerabilities. It provides valuable insights, recommendations, and
strategies to bolster the security of your smart contract-based project.

GOAL:
Getting an outside perspective or delegating research to experts.

PROS:
● Outside perspective without any biases
● Your team can focus on other things

CONS:
● You won't always get the answer you want
● Can be time-consuming (expensive) for specialists who are not familiar

with your project

WHEN:
● Before making a decision that considers several solutions
● Before starting work in a new unexplored direction

EXAMPLE PROVIDERS:
● Composable Security (https://composable-security.com)
● Prototech labs (https://www.prototechlabs.dev/)
● Dedaub (https://dedaub.com/)

26

https://composable-security.com
https://www.prototechlabs.dev/
https://dedaub.com/

EXPECTED COST:
● Usually time boxed
● $

Composable Security average rates for security consultations at the end of
2022 ($1000-$8000)

ACTIONS TO IMPLEMENT:
Find the Right Experts: Seek out experienced professionals who
specialize in smart contract security. Look for those with a proven track
record and deep knowledge in the field.

Define Your Objectives: Clearly communicate your goals, requirements,
and concerns to the security consultants. Establish the scope and focus
areas for their consultation.

Collaborate and Share: Foster open communication and collaboration
with the consultants. Provide them with the necessary access to your
codebase, documentation, and relevant information. Engage in
discussions to gain insights and address any questions or concerns.

Act on the Recommendations: Take the recommendations and
suggestions provided by the consultants seriously. Implement the
necessary changes, enhancements, or fixes identified during the
consultation process.
Continuous Engagement: Establish an ongoing relationship with the
security consultants. Schedule regular check-ins or periodic audits to
ensure the continued security of your smart contracts. Stay proactive
and adapt to emerging threats and evolving best practices.

READ MORE:
Composable Security - Security Consultation

27

https://composable-security.com/services/security-consultations/

Smart Contract Security Review
by Professional Company

DESCRIPTION:
A Smart Contract Security Review by a professional company offers a thorough
evaluation of your smart contract code by experienced experts. They dig deep
to uncover vulnerabilities, offering practical insights and actionable
recommendations to beef up your project's security. With a professional
company on your side, you can trust in a thorough and expert-driven approach
to safeguard your smart contracts.

GOAL:
Minimizing the risk of a hack and improving code quality

PROS:
● A team of specialists is working on your project
● Work on time, no dependence on individuals
● Access to many specialists
● Simple processing and communication

CONS:
● Can be expensive
● Quality depends not only on the selected company, but also on

specialists assigned to your project

WHEN:
● Before the release
● Significant changes in the code
● Cross-check

28

EXAMPLE PROVIDERS:
● Composable Security (https://composable-security.com)
● Dedaub (https://dedaub.com/)
● BlockSec (https://blocksec.com/)
● Cyfrin (https://www.cyfrin.io/)
● more: (https://defisafety.com/auditors)

EXPECTED COST:
● Depends very much on the provider
● Usually priced based on:

○ lines of code
○ complexity
○ quality of documentation

● $$/$$$

Composable Security average rates for security review at the end of 2022:
○ Single contracts $1500 - $8000
○ Little project $6000 - $18000
○ Medium and big projects $18000+

ACTIONS TO IMPLEMENT:
Choose a Reputable Security Firm: Do your due diligence and select a
professional company with a strong track record in smart contract
security. Look for expertise, industry recognition, and positive reviews.

Define the Scope and Objectives: Clearly communicate your project's
scope, goals, and specific areas of concern to the security firm. Provide
access to the separate audit branch, relevant documentation, and
system architecture details.

Collaborate and Share: Foster open communication and collaboration
with the security firm. Be responsive to their inquiries, provide additional
context when needed, and engage in regular discussions to exchange
insights and address any questions.

29

https://composable-security.com
https://dedaub.com/
https://blocksec.com/
https://www.cyfrin.io/
https://defisafety.com/auditors

Act on the Recommendations: Take the security firm's findings seriously
and prioritize their recommendations. Implement necessary code fixes,
architectural improvements, and security enhancements based on their
expert guidance.

Periodic Reviews and Continuous Improvement: Consider periodic
reviews by the security firm to ensure ongoing security. Smart contract
security is a continuous effort, so establish a long-term partnership to
stay up-to-date with evolving threats and industry best practices. Keep
refining your security posture based on their insights and emerging
trends.

REQUEST AN AUDIT:
https://composable-security.com/contact/

30

https://composable-security.com/contact/

Security Contests

DESCRIPTION:
Security Contests in smart contract security are like crowdsourced bug hunts
for your smart contracts. By offering rewards, you motivate skilled security
researchers and hackers to dig deep and uncover vulnerabilities that may have
slipped through the cracks. It's a proactive way to catch and fix security issues
before they become real problems, harnessing the power of the community to
strengthen your project's security.

GOAL:
Minimizing the risk of a hack and improving code quality

PROS:
● The potential for a much larger number of people involved in finding bugs
● Work on time, no dependence on individuals

CONS:
● Expensive
● A lot of DM’s, repetitive questions
● Different quality of findings

WHEN:
● Before the release

EXAMPLE PROVIDERS:
● Code4Arena (https://code4rena.com/)
● Hats Finance (https://hats.finance/)
● Sherlock (https://audits.sherlock.xyz)
● CodeHawks (https://www.codehawks.com/)

31

https://code4rena.com/
https://hats.finance/
https://audits.sherlock.xyz
https://www.codehawks.com/

EXPECTED COST:
● Depends very much on the provider
● $$$
● Code4Arena (https://code4rena.com/sponsor)

○ a 20% fee on top of the determined contest pool
○ a 40% fee on sponsor tokens
○ Pool determined by nSLOC (e.g. $30000 per 1000 nSLOC)

● Hats Finance (https://hats.finance/protocols)
○ If no valid vulnerabilities are identified, the hats protocol gets

nothing.
○ Reward only for the first unique submission
○ 20% service fees dependent on audit payout

● Sherlock
(https://docs.sherlock.xyz/audits/protocols/audit-pricing-and-timeline)

○ ~500 nSLOC - $16500
○ ~1000 nSLOC - $32000
○ ~2000 nSLOC - $64000

● CodeHawks (https://docs.codehawks.com/pricing/)
○ The CodeHawks/Cyfrin team takes 20% of the total prize pool

ACTIONS TO IMPLEMENT:
Define Contest Objectives: Clearly outline the purpose, scope, and rules
of the security contest. Specify the types of vulnerabilities you want
participants to focus on and address all questions that might arise in
advance.

Set Attractive Rewards: Offer enticing rewards that incentivize
participants to invest their time and expertise. Ensure the rewards align
with the significance and complexity of the vulnerabilities discovered. In
addition to money, consider something whose perceived value is greater
than its real value e.g. swag, promotional interview for the best.

Engage a Trusted Platform: Utilize reputable platforms to host your
security contest. These platforms provide access to a diverse pool of

32

https://code4rena.com/sponsor
https://hats.finance/protocols
https://docs.sherlock.xyz/audits/protocols/audit-pricing-and-timeline
https://docs.codehawks.com/pricing/

skilled researchers and a structured framework for managing
submissions.

Promote the Contest: Spread the word through security channels, social
media, and relevant communities to attract talented participants.
Engage with the community, answer questions, and create buzz around
your contest.

Thoroughly Address Vulnerabilities: Act promptly on the findings of the
security contest. Prioritize and fix the identified vulnerabilities, and
provide feedback to the participants on their submissions. This fosters a
collaborative atmosphere and encourages future participation.

33

Smart Contract Security Review
by Solo Auditors

DESCRIPTION:
Solo Audits in smart contract security mean putting your code in the hands of a
skilled expert who goes through it with a fine-tooth comb. They dive deep,
uncover vulnerabilities, and provide you with actionable insights to fortify your
smart contract's security. With a solo audit, you get a focused and expert-led
examination without the need for a big auditing team.

GOAL:
Minimizing the risk of a hack and improving code quality.

PROS:
● Relatively cheap compared to alternatives
● You know exactly who is auditing your code

CONS:
● Dependency on the individuals
● Only one expert reviews the code
● Narrow specialization and scope of services

WHEN:
● Mostly as cross-check or initial audit
● Before the release
● Significant changes in the code

EXAMPLE PROVIDERS:
● bytes032 (https://bytes032.xyz/ Telegram: @bytes_032)
● pashov (https://github.com/pashov/audits Twitter: @pashovkrum)
● zachobront (https://zachobront.com/ Twitter: @zachobront)

34

https://bytes032.xyz/
https://github.com/pashov/audits
https://zachobront.com/

EXPECTED COST:
● Depends very much on the provider
● Usually priced based on:

○ amount of code
○ complexity
○ quality of documentation

● $/$$

ACTIONS TO IMPLEMENT:
Choose a Trusted Expert: Find a seasoned professional with a proven
track record in smart contract security. Look for individuals who have a
deep understanding of the blockchain ecosystem and a strong
background in auditing. Code4Arena profile or other rankings can be
really helpful here.

Define Audit Scope: Clearly communicate the specific areas and
components of your smart contract that you want the auditor to focus
on. Set expectations and provide access to relevant documentation and
code.

Engage in Effective Communication: Establish regular and open lines of
communication with the auditor. Respond promptly to their queries and
provide any additional information or clarification they may need to
perform the audit effectively.

Act on Audit Findings: Take the auditor's findings seriously and prioritize
the recommended fixes and enhancements. Implement necessary code
modifications and security measures based on their expert insights.

Continuous Improvement: Treat the solo audit as part of an ongoing
process. Consider conducting regular audits or engaging the auditor
periodically to ensure that your smart contract's security remains robust.
Stay proactive in addressing potential vulnerabilities and stay updated
with emerging best practices.

35

Bug Bounties

DESCRIPTION:
Bug Bounties in smart contract security are programs that incentivize the
community to find and report vulnerabilities in your smart contracts. By offering
rewards, you tap into a diverse pool of skilled researchers and hackers, who
actively search for and disclose vulnerabilities. Bug bounties provide a proactive
approach to identifying and resolving security issues, strengthening the overall
security posture of your smart contract-based project.

GOAL:
Creating a dilemma for the real attacker

PROS:
● You can minimize the effects of a real attack
● Pay for confirmed vulnerabilities
● Listing on some platforms is free

CONS:
● Requires very large rewards to attract the best

WHEN:
● After the release

EXAMPLE PROVIDERS:
● Immunefi
● HackenProof
● Hats Finance

36

EXPECTED COST:
● Immunefi (https://immunefi.com/projects/)

○ FREE listing
○ FREE triage services. They do automatic + manual triage
○ 10% of the reward paid for valid submission

● HackenProof (https://hackenproof.com/bug-bounty-solutions)
○ FREE listing
○ FREE triage services in case of smart contracts. They do manual

triage
○ triage services cost $500 per month if it's a big ecosystem with

web, mobile, API, etc.
○ 10% bug fee from each valid report, but can be less if you

approach them through a partner (contact us to get a discount).
○ They work with CER.LIVE and CoinGecko and as soon as their

clients start bug bounty they send information to increase their
security ratings

● Hats Finance (https://docs.hats.finance/general/bug-bounties)
○ On-chain submissions
○ Requires setting up the vault on-chain.

ACTIONS TO IMPLEMENT:
Define Bug Bounty Scope: Clearly outline the scope of your bug bounty
program, specifying which types of vulnerabilities you are interested in
and any specific rules or limitations. This ensures researchers know what
to focus on and helps manage expectations.

Determine Reward Structure: Establish a fair and enticing reward
structure that aligns with the severity and impact of the discovered
vulnerabilities. Set clear guidelines on how rewards will be determined
and distributed to incentivize researchers to actively participate.

Choose a Bug Bounty Platform: Engage a reputable bug bounty platform
that specializes in smart contract security. Leverage their expertise,
network, and infrastructure to manage the program effectively, ensuring
secure and organized communication with researchers.

37

https://immunefi.com/projects/
https://hackenproof.com/bug-bounty-solutions
https://docs.hats.finance/general/bug-bounties

Promote the Bug Bounty: Spread the word about your bug bounty
program through security communities, social media, and relevant
channels. Reach out to specialized forums and conferences to attract
skilled researchers. Actively engage with researchers, answer questions,
and provide prompt feedback on submissions.

Act on Valid Submissions: Prioritize and validate bug reports promptly.
Acknowledge and reward researchers for valid findings, and communicate
with them to gain additional details if needed. Address the reported
vulnerabilities swiftly to ensure the security of your smart contract
project. Maintain a positive and collaborative relationship with the
security community.

38

Security Insurance (post audit)

DESCRIPTION:
Security Insurance is like having a superhero sidekick ready to swoop in when
disaster strikes your smart contract system. It offers financial protection and
support to recover from hacks or breaches, compensating affected users and
restoring their trust. With Security Insurance, you're prepared to combat the
unexpected, minimize losses, and survive this difficult moment.

GOAL:
Smooth recover from the incident

PROS:
● Financial protection and easier recovery
● Increased community trust

CONS:
● Insurance policies often have specific terms, conditions, and exclusions
● Additional cost

WHEN:
● After the release

EXAMPLE PROVIDERS:
● InsurAce Protocol
● Sherlock
● UnoRe
● Chainproof

39

EXPECTED COST:
● InsurAce post-audit coverage

(https://docs.insurace.io/landing-page/documentation/cover-products/po
st-audit-cover)

○ Pricing based on risk assessment
○ The audit should be performed by one of the partners
○ Claim assessments are conducted by the Advisory Board and the

Claim Assessors through investigation and community voting
○ Estimated 5-10% of TVL up to $500k, 8 week cover

● Sherlock (https://docs.sherlock.xyz/coverage/protocols/pricing)
○ 4% of TVL per year (in monthly premium) for a public audit contest

(assuming they meet all other coverage criteria such as a
successful fix review, etc.).

○ 4.75% of TVL per year (in monthly premium) for a private audit
contest.

○ requires a ~month of upfront payment before coverage can be
activated.

○ Sherlock will cover up to 200k USDC of a Critical bug bounty
payout.

● UnoRe
(https://unore.gitbook.io/uno-re/08.-cover-definition/smart-contract-cove
r)

○ compensated in $UNO or $ETH within 10 working days of
claim-filing

○ soon a Dune dashboard will be created to track real-time the
revenue of the protocol

○ The calculation considers the risk level assumed by the Liquidity
Providers and Uno Re protocol, while also strategizing the policy
formulation to maximize the number of wallets protected.

● Chainproof
(https://www.chainproof.co/blog/reaching-a-new-frontier-in-smart-contra
ct-security-and-insurance)

○ Maximum insurance $10 mln

40

https://docs.insurace.io/landing-page/documentation/cover-products/post-audit-cover
https://docs.insurace.io/landing-page/documentation/cover-products/post-audit-cover
https://docs.sherlock.xyz/coverage/protocols/pricing
https://unore.gitbook.io/uno-re/08.-cover-definition/smart-contract-cover
https://unore.gitbook.io/uno-re/08.-cover-definition/smart-contract-cover
https://www.chainproof.co/blog/reaching-a-new-frontier-in-smart-contract-security-and-insurance
https://www.chainproof.co/blog/reaching-a-new-frontier-in-smart-contract-security-and-insurance

○ The regulated cyber-insurance carrier for non-custodial smart
contracts

○ Backed by Sompo and reinsured by Munich Re
○ Price based on risk analysis which among others includes: audit by

a trusted partner, documentation, incident history, policy
composition and more.

○ Claims are sent via forms. A technical investigation takes place
and an on-chain report is published, which shows whether the
policy includes the cause of the hack.

ACTIONS TO IMPLEMENT:
Research Reputable Security Insurance Providers: Explore insurance
providers with expertise in smart contract security coverage. Look for
companies with a proven track record, strong financial backing, and a
comprehensive understanding of the unique risks and requirements in
the blockchain and smart contract space.

Evaluate Coverage Options: Assess the coverage options offered by
different insurance providers. Analyze the terms, conditions, and limits of
the policies to ensure they align with the specific needs and risks of your
smart contract project. Seek clarification on any ambiguous or unclear
aspects before making a decision.

Understand Policy Requirements: Familiarize yourself with the
requirements outlined in the insurance policy. Ensure that your smart
contract system meets the specified security standards and best
practices to qualify for coverage. Take necessary steps to align your
development processes and security protocols with the policy
requirements.

Implement Robust Security Measures: Strengthen your smart contract
security measures to reduce the likelihood of a breach and demonstrate
a proactive approach to risk mitigation. Enhance access controls, apply
thorough testing and auditing procedures, and regularly update your
codebase to address any identified vulnerabilities or weaknesses.

41

Establish Incident Response Plan: Develop a comprehensive incident
response plan that outlines the steps to be taken in case of a security
breach. Define clear roles and responsibilities, establish communication
channels, and establish protocols for notifying the insurance provider in
case of an incident. Regularly review and update the plan to reflect
changes in your smart contract system and evolving security threats.

There are also other types of coverage such as: Protocol Cover, Yield Token
Cover, Stablecoin Depeg Cover, Custody Cover. Some of them do not have to be
a cost on your side. You can consider partnership and provide favorable
conditions to your users.

RESOURCES:
How to choose DeFi Cover
How to compare DeFi Cover providers

42

https://opencover.com/how-to-choose-defi-cover/
https://opencover.com/defi-insurance/defi-insurance-protocols/

Formal Verification

DESCRIPTION:
Formal Verification is like bringing a math genius to analyze your smart
contract code. It uses mathematical methods to prove that your code is rock
solid, free from vulnerabilities and errors. It's like having an ironclad guarantee
that your smart contract will work as intended, no funny business. However, as
others it may not cover all possible scenarios, as it relies on formal models and
assumptions that may not capture every real-world situation.

GOAL:
Gain confidence in excluding specific risks

PROS:
● Provides a high level of confidence
● Systematic and thorough analysis of the smart contract code

CONS:
● Expensive
● If you have poor documentation, formal verification can make sure that

your code and documentation have the same bugs ;)
● Relies on formal models and assumptions, which may not fully capture

all real-world scenarios and edge cases
● Requires an expert to prepare the correct specification

WHEN:
● During the development (building the specification)
● Before the release (running the verification)
● Significant changes in the code (building the specification & running the

verification)

43

EXAMPLE PROVIDERS:
● Certora
● Runtime Verification

EXPECTED COST:
● Depends very much on the provider and their business model (fixed price,

pay as you go)
● Usually priced based on:

○ amount of code
○ needed expert to build the specification

● $$$

ACTIONS TO IMPLEMENT:
Select a Specialized Formal Verification Provider: Choose a trusted
third-party provider with a solid track record in Formal Verification for
smart contracts. Look for experts who understand your programming
language and have a proven ability to deliver reliable results.

Provide Access to Code and Documentation: Share the necessary
codebase and relevant documentation with the third-party provider. Give
them the resources they need to conduct a thorough formal analysis of
your smart contract.

Give yourself time for invariants: The effect depends on how
well-thought-out the models and invariants are. It's a structure you build
and then use, so spend enough time on it.

Collaborate Actively: Engage in regular, open communication with the
provider. Be responsive to their inquiries, provide clarifications when
needed, and work together to ensure a comprehensive verification
process.

Iterate and adapt: Focus on areas where there are a lot of vulnerabilities
(what causes them and how to reduce them) and no vulnerabilities (has
something been missed?)

Implement Verified Recommendations: Take the verification findings
seriously. Address any vulnerabilities or issues identified by the

44

third-party provider promptly and effectively. Make necessary
improvements to your smart contract code based on their
recommendations.

RESOURCES:
FORMAL VERIFICATION OF SMART CONTRACTS
Certora Technology White Paper

45

https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/
https://medium.com/certora/certora-technology-white-paper-cae5ab0bdf1

Smart Contract Monitoring
DESCRIPTION:
Smart contract monitoring tools are like vigilant watchdogs for your
blockchain-based contracts. They constantly watch and assess how your
contracts are behaving and flag any unusual activities or security risks in
real-time. By using these tools, you can quickly spot and respond to potential
issues, ensuring the security and reliability of your smart contracts.

GOAL:
Post-deployment threat detection

PROS:
● Possibility of recovery after a mistake
● Reducing the need for manual oversight and enabling faster response to

security incidents.

CONS:
● A high number of false positives can decrease security awareness by

fatiguing your team.
● Continuous monitoring can consume a lot of resources.

WHEN:
● After deployment.

The most important things to understand:
1. CryptoTwitter is not monitoring.
2. You must have monitoring.

46

INTERNAL MONITORING:
● Gearbox risk framework is a project whose extensive internal monitoring

can be a model and we encourage you to familiarize yourself with their
Risk Framework dashboards and transparent approach to security.

○ https://risk.gearbox.foundation/events

EXAMPLE PROVIDERS:
● BlockSec Phalcon Block (https://phalcon.xyz/block)

The Phalcon Block pre-run transactions from the mempool and monitor
them with detectors. If a transaction is marked as malicious, the team is
alerted and the transaction blocked.

● Guardrail (https://www.guardrail.ai/)
Continuously analyzes interactions for threats across the entire stack
using artificial intelligence. You create your own detection rules specific
to your project using ready-made and customizable templates.

○ Supported networks:
■ Ethereum mainnet
■ BNB Chain
■ Polygon mainnet
■ Arbitrum
■ Avalanche
■ Fantom
■ Optimism
■ Gnosis
■ Boba

● Cyvers (https://cyvers.ai/platform)
AI-based platform that identifies patterns and anomalies across
blockchains in real-time for proactive mitigation.

○ Small project $500 per month
○ Medium project $1000-3000 per month
○ Big project $4000+ per month

● Dedaub Watchdog

47

https://risk.gearbox.foundation/events
https://phalcon.xyz/block
https://www.guardrail.ai/
https://cyvers.ai/platform

Automated deep static analysis of contract code combined with dynamic
protocol monitoring (all interacting/newly deployed contracts, current
chain state, past and current transactions) and statistical learning of
code patterns across all contracts ever deployed on EVM networks.

○ Monitoring $1000 per month
○ Together with static analysis $1000-2000 per month

● Forta (https://docs.forta.network/en/latest/getting-started/)
The Forta Network tracks blockchain actions live, spotting security risks
and notable events through many detection bots, created by a Web3-dev
community and security pros.

○ The General Plan
■ costs 250 FORT per month
■ provide subscribers with access to all bots except those

designated as Premium Feeds
○ The Premium Feeds

■ in order for a feed to be included as a Premium Feed, they
must undergo approval by the Forta Governance Council or
request a community Snapshot vote

■ individually priced by their developers in either USDC or FORT
■ available detectors examples are: Scam, Spam and Rug Pull

● Lossless Aegis (https://docs.lossless.io/aegis)
The AI-powered smart contract threat monitoring system. Aegis
continuously scans all mined block transactions and employs predictive
analytics to identify malicious on-chain activity. Suspicious transactions
and the associated addresses are flagged based on severity. Project
teams are forewarned of potential threats via real-time alerts across
multiple channels (email, slack, telegram, sms, webhooks).

○ Supported networks:
■ Ethereum mainnet
■ BNB Chain
■ Polygon mainnet
■ Avalanche
■ Fantom

48

https://docs.forta.network/en/latest/getting-started/
https://docs.lossless.io/aegis

■ Harmony
■ Elysium

● Pessimistic Spotter (https://spotter.pessimistic.io/)
● Hypernative (https://www.hypernative.io/)
● Hexagate (https://www.hexagate.com/real-time-protection)
● Ironblocks

(https://docs.ironblocks.com/security-suite-docs/executive-summary)

ACTIONS TO IMPLEMENT:
Tool Selection: Start by researching and selecting a reliable smart
contract monitoring tool that aligns with your project's blockchain
platform and security requirements. Ensure the tool provides real-time
monitoring, security alerts, and comprehensive contract analysis
features.

Integration Planning: Develop a clear plan for integrating the selected
monitoring tool into your smart contract project. This plan should outline
the deployment process, including any necessary configurations or
customizations to ensure seamless compatibility with your contracts.

Continuous Monitoring: Implement continuous monitoring of your smart
contracts. Configure the tool to track contract activity, transactions, and
potential vulnerabilities in real time. Set up alerts and notifications to
promptly flag any unusual or suspicious behavior.

Incident Response Protocols: Establish well-defined incident response
protocols that specify how the team should react to alerts or identified
security threats. Ensure that team members know their roles and
responsibilities in addressing and mitigating contract-related issues.

Regular Assessment and Optimization: Periodically review the
effectiveness of the monitoring tool and your monitoring strategy. Adjust
configurations, update alert thresholds, and expand monitoring coverage
as needed to adapt to changing security risks and the evolving smart
contract landscape.

49

https://spotter.pessimistic.io/
https://www.hypernative.io/
https://www.hexagate.com/real-time-protection
https://docs.ironblocks.com/security-suite-docs/executive-summary

READ MORE:
DSS 2023 Monitoring Panel
DSS 2023 Monitoring & Incident Response
DSS 2023 Proactive threat prevention
CIRCUIT BREAKER EIP-7265
Pessimism, an open source monitoring system designed to enhance the
security of Base
Spotter Overview

50

https://www.youtube.com/watch?v=nFg7G0HGRLI
https://www.youtube.com/watch?v=TDlkkg8N0wc
https://www.youtube.com/watch?v=3hHbudz6R18
https://github.com/ethereum/EIPs/blob/ac1fc064ebdf2a7190fab1b36d7d8b2fb7edc21c/EIPS/eip-7265.md
https://base.mirror.xyz/qQAChAdkfZDG_8Ik7FgrMIpjE-si3TdF1E5W6c8ruFQ
https://base.mirror.xyz/qQAChAdkfZDG_8Ik7FgrMIpjE-si3TdF1E5W6c8ruFQ
https://blog.pessimistic.io/pessimistic-spotter-overview-7fe43a175d68

51

INCREASING EFFICIENCY

52

In this chapter, we give you tools and tactics that will help
you get started quickly and operate efficiently.

Explore templates and implement ready-made tools into your
security arsenal.

53

Audit Readiness Checklist

DESCRIPTION:
Optimize the time and costs of a security audit for your smart contract code. By
following this checklist, you can proactively address potential vulnerabilities and
ensure your code is well-prepared, saving valuable time and reducing unnecessary
back-and-forth with auditors. It streamlines the audit process, enabling you to
achieve a thorough and cost-effective assessment while maximizing the chances of a
successful outcome.

Composable Security - quick audit readiness checklist

ID TASK RESPONSIBLE PERSON STATUS

1. Code Clarity

1.1 I have deleted unused code snippets and old
comments.

1.2 I have added at least 1-2 sentences describing the
purpose of each of the smart contracts.

1.3 I have described each variable and function.

1.4 I followed a code style that was consistent
throughout the codebase.

1.5 I made sure that the variables and functions were
named in a way that corresponds to their purpose
and that they are easy to understand.

2. Documentation

2.1 I described the roles in the project and what they
should have access to.

2.2 I have described the main user's business flow in
detail.

2.3 I have created high-level diagrams of the protocol.

2.4 I have updated the white paper.

2.5 I briefly described the plans for the potential
expansion of the project.

54

3. Communications

3.1 I chose a channel through which we will
communicate and invited the required people to it.

3.2 I have indicated the person who will be the main
contact and to whom questions should be
addressed.

4. Materials for auditors

4.1 I created a separate GitHub branch for auditing with
files from defined scope (and froze the code).

4.2 I provided reports from previous audits.

4.3 I sent the auditors the documentation of our
project (e.g. white paper, architecture diagram, flow
diagrams).

5. Automated tools

5.1 I ran the slither with default settings and handled
the reported bugs.

5.2 I launched solidity-coverage to confirm excellent
coverage.

6. Final checks

6.1 I compiled the code and ran tests from the audit
branch in a fresh environment.

55

Due Diligence

DESCRIPTION:
Choosing the right smart contract audit provider is crucial, so take the time to
find a company that matches your needs and can demonstrate a proven track
record of successful audits.

Experience and Reputation

● Which auditors will review our code and what is their experience?
● Can you provide references from past clients?
● Can we review some samples of your previous audit reports?
● Have any of your audited smart contracts been compromised? If so,

please provide details about the breach and the steps you took
afterwards.

Approach and Methodology

● Can you describe your approach to auditing smart contracts?
● Do you use manual auditing, automated tools, or a combination of both?
● What types of vulnerabilities do you focus on?
● How do you keep up with the latest vulnerabilities and attack vectors in

the smart contract landscape?

Scope and Timing

● How long does an average audit take?
● What factors might extend the audit timeline?
● What is included in your standard audit scope? Can the scope be

customized to our needs?
● How do you handle urgent audit requests?

56

After Audit Support

● What kind of post-audit support do you provide?
● If a vulnerability is discovered after the audit, how will you handle it?
● Do you provide a re-audit after the vulnerabilities are fixed? If so, is there

an additional cost?

Pricing and Contract

● How do you determine pricing for the audits?
● Do you offer any guarantees, post-audit coverage or warranties?

Industry Knowledge and Thought Leadership

● What contributions has your team made to the smart contract auditing
industry?

● Are any of your team members actively involved in the blockchain
community, such as contributing to open-source projects, speaking at
conferences, or publishing research?

*You can find our answers on our website.

57

Maximizing the Use of Audit Reports

DESCRIPTION:
Maximizing the use of audit reports is about treating them as gold mines of
valuable information. It's about extracting insights, leveraging the
recommendations, and integrating them into your knowledge base. By
embracing the audit report as a valuable resource, you can strengthen your
smart contract security practices, continuously improve your code, and build a
robust foundation for future development endeavors.

ACTIONS TO IMPLEMENT:
See Further: Mine the audit report for gold nuggets of knowledge. Look
for patterns, similarities, and lessons that can be applied not only to your
current project but also to ongoing initiatives. Share the detected issues
and solutions with other teams to prevent similar pitfalls.

Fortify Unit Tests: Strengthen your unit tests to cover the new threats
and vulnerabilities revealed during the audit. Let the findings guide you
in expanding your test suite, ensuring it encompasses the discovered
weaknesses and safeguards against future risks.

Foster Internal Discussions and Learning: Spark internal discussions
about the bugs and vulnerabilities found during the audit. Create a
culture of shared learning by encouraging your team to dissect the
issues, learn from them collectively, and incorporate the insights into
peer reviews. By embracing a collaborative approach, you build a
stronger foundation for secure development. Don't blame anyone for
mistakes if you want the team to grow!

Leverage Different Perspectives: Embrace diverse perspectives by
engaging in cross-checks. Capitalize on alternative approaches, utilize
complementary security tools, or involve external auditors to validate and
corroborate the vulnerabilities and recommendations highlighted in the
audit report. All the largest banks, despite constant cooperation, rotate

58

auditing companies. This multi-faceted assessment enhances the
thoroughness and reliability of your security measures.

Document Lessons Learned: Capture the insights and knowledge gained
from the audit process. Document the vulnerabilities, their resolutions,
and the lessons learned to build a comprehensive knowledge base. This
knowledge will guide future development and help prevent similar issues
from recurring.

59

Security Patterns to Enforce

Checks-Effects-Interactions (CEI):
This security pattern focuses thoroughly on validating and verifying input, and
carefully managing interactions within your smart contract code. It helps
minimizing the risk of malicious or unintended behavior, especially unsecure
external calls, reentrancy.

● When designing function logic, plan the elements in the following order:
//CHECKS - if, require
//EFFECTS - balance[msg.sender]++
//INTERACTIONS - call.value()

Principle of Least Privilege (POLP):
The POLP security pattern emphasizes granting minimal access and privileges
to entities within the smart contract ecosystem. By following this principle, you
limit the exposure of sensitive functions and data, reducing the potential attack
surface and preventing unauthorized entities from accessing critical
components.

● Existing roles in the system should only have access to the functions
that are necessary for them.

Core Invariant and Others (CIAO):
CIAO highlights the importance of identifying and preserving core invariants,
which are fundamental properties that must remain true throughout the
execution of your smart contract. By focusing on core invariants, you ensure the
stability, consistency, and reliability of your smart contract system. Additionally,
it encourages identifying and protecting other critical properties to maintain
the overall security and integrity of your project.

60

● Define core invariant and additional ones if needed. Both in unit tests
and when calling functions that change the state, check if the invariant
has not been broken.

Zero Trust (ZT):
The ZT security pattern challenges the traditional perimeter-based security
model and adopts an approach of continuous verification and authentication
for all entities and actions within the smart contract ecosystem. It emphasizes
the need to validate every request and transaction, regardless of the source or
location, fostering a proactive and robust security posture that assumes
potential threats exist both inside and outside the system.

● Do not trust external smart contracts. Think about what will happen
when one of your internal components is compromised. Use several
sources and check the data you receive. Monitor contracts that can be
updated.

Pull Over Push (POP):
POP promotes a security pattern that favors a "pull" approach rather than a
"push" approach when it comes to data and actions within a smart contract
system. Instead of allowing external entities to directly modify or manipulate
data, the system design encourages external entities to request and retrieve
data through well-defined, controlled mechanisms.

● Don't send funds to users, let them withdraw funds themselves,

61

Automatic Tools

DESCRIPTION:
Automatic security tools play a pivotal role in fortifying the defenses of Web3
projects. As the decentralized web evolves, the complexity and potential
vulnerabilities of smart contracts and dApps increase. These tools offer smart
contract analysis, detecting vulnerabilities through both static and dynamic
analysis.

The ease of integrating these tools into CI/CD workflows (e.g. via GitHub
Actions) means that even as projects scale, security remains a consistent and
automated priority, ensuring the trust and safety that Web3 promises its users.
By integrating these tools into the Continuous Integration/Continuous
Deployment (CI/CD) pipeline, developers can ensure that security checks are
conducted automatically with every code change, making the process seamless
and efficient. This not only reduces the risk of deploying vulnerable code, but
also fosters a proactive security culture.

GOAL:
Start using automatic tools within your development process.

Tools:
We are firstly going to cover two tools that cannot be easily integrated into
CI/CD, but are very helpful for developers to gather insights about the
contracts, especially when the codebase is large.

Solidity metrics
Solidity metrics brings an overall summary of the contracts, including such
numbers as:

● number of lines,
● number of functions with their types (payable, external, etc.),
● complexity and risk profiles,
● other delivered by the next tool described below (Surya).

62

Its biggest advantage is that it has a VSCode extension and presents all details
in human readable format (HTML). This is particularly useful when you want to
roughly estimate the cost of an upcoming audit, as one of the important
factors is the size of contracts in scope.

Installation
Solidity metrics can be installed as node package:

npm install solidity-code-metrics

Additionally, it has a VSCode extension that can be installed from the VSCode
extensions list. This is the best option as you have it integrated in your IDE (if
your IDE is VSCode).

Usage
One way is to use it as binary in the terminal and save report to HTML file:

solidity-code-metrics myfile.sol --html > metrics.html

However, an easier and recommended way is to use it as a VSCode extension.

Link
https://github.com/Consensys/solidity-metrics

63

https://github.com/Consensys/solidity-metrics

https://github.com/Consensys/vscode-solidity-metrics

Surya

Surya provides developers with a visual representation of the structure and
flow of their Solidity contracts, aiding in understanding and analyzing the
codebase. With functionalities like generating a function call graph or showing
inheritance chains, Surya simplifies the process of reviewing and auditing
complex smart contracts.

Surya provides the following outputs:
● contracts’ inheritance graph,
● control flow graph,
● treefied function call trace,
● and most importantly - a summary of the contracts and methods in the

files provided as output from the describe command.

Installation
Surya can be installed as a node package. The example below shows how to
install it globally so that you will not have to install it in each project.

npm install -g surya

Surya does not have a VSCode extension, but afore-mentioned tool - Solidity
metrics - presents most of its results.

Usage
Depending on the output you would like to get, you must use a specific
subcommand. For example, if you want to see the contracts summary, use the
describe command:

surya describe contracts/*.sol

The output:

64

https://github.com/Consensys/vscode-solidity-metrics

The other option to get a full report in Markdown format.

surya mdreport report_outfile.md contracts/*.sol

However, the same result you would get with Solidity metrics within VSCode.

Link
https://github.com/Consensys/surya

Solhint
Solhint is a linter tool specifically designed for Solidity. Linters are essential in
software development as they analyze code to detect potential errors, enforce
coding standards, and ensure consistent styling.

Solhint provides both security and style guide validations, helping developers
identify and rectify potential vulnerabilities, anti-patterns, and breaches of
coding conventions in their Solidity code. By integrating Solhint into their
development workflow, Solidity developers can enhance the security,
readability, and maintainability of their smart contracts, ensuring they adhere
to best practices and reduce the risk of costly mistakes in the decentralized
environment.

65

https://github.com/Consensys/surya

Installation
npm install -g solhint

Usage
First initialize a configuration file, if you don't have one:

solhint --init

This will create a .solhint.json file with the default rules enabled. Then run
solhint with one or more files as arguments. For example, to lint all files inside
contracts directory, you can do:

solhint 'contracts/**/*.sol'

You can also integrate solhint with the following IDEs (see the GitHub link for
more details):

● Sublime Text 3
● Atom
● Vim
● JetBrains IDEA, WebStorm, CLion, etc.
● VS Code: Solidity by Juan Blanco
● VS Code: Solidity Language Support by CodeChain.io

It is also recommended to create a GitHub action that will execute solhint on
each pull request commit. That would be the last layer of detection before the
code lands on the main branch.

Link
https://github.com/protofire/solhint

Slither
Slither is a static analysis tool, designed to detect vulnerabilities, coding
mistakes, and inefficiencies in Solidity code. Slither examines the contract's
abstract syntax tree and control flow graphs to provide precise insights. With

66

https://github.com/protofire/solhint

its comprehensive set of detectors, it can identify a wide range of issues, from
reentrancy attacks to incorrect visibility settings.

By integrating Slither into the development workflow, Ethereum developers can
proactively address potential security threats, ensuring that smart contracts
deployed on the blockchain are robust, efficient, and secure. Its ability to
produce actionable recommendations makes Slither an invaluable asset in the
toolkit of anyone serious about smart contract security.

Installation
Slither was written in Python and can be installed using pip command:

pip3 install slither-analyzer

There are other options to install and use Slither, e.g. using Docker or build
from scratch.

Usage
Run Slither on a Hardhat/Foundry/Dapp/Brownie application:

slither .

This is the preferred option if your project has dependencies as Slither relies on
the underlying compilation framework to compile source code.

However, you can run Slither on a single file (or multiple files) that does not
import dependencies:

slither StandaloneContract.sol

Slither will analyze the contract and provide an output of potential
vulnerabilities, coding mistakes, or inefficiencies. The output might look
something like this:

INFO:Detectors:
Factory.createToken(TokenInput,address[],uint256[]).market
(contracts/Factory.sol#50) is a local variable never
initialized

67

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation
#uninitialized-local-variables

INFO:Detectors:
Token.constructor(string,string,uint256).name
(contracts/Token.sol#11) shadows:

- ERC20.name()
(node_modules/@openzeppelin/contracts/token/ERC20/ERC20.sol#6
1-63) (function)

- IERC20Metadata.name()
(node_modules/@openzeppelin/contracts/token/ERC20/extensions/
IERC20Metadata.sol#16) (function)

This is a basic example, and the actual output will vary based on the contract's
complexity and the vulnerabilities detected.

Besides the detectors provided by the Slither’s core team, there are initiatives
to create additional ones, like the slitherin (see links section), which is an easy
to install set of detectors that will be automatically added to Slither.

Moreover, you can use the VSCode extension for Slither that will run Slither
directly from VSCode, list findings in GUI and open the specific file and line
where the issue has been found, put simply - it makes using Slither very easy
and comfortable.

What is more, you can use existing GitHub Action (see links section) that will
execute Slither on each pull request commit. That will automatically find the
low-hanging fruits. However, be aware of some false positives that you will
have to take care of manually.

Link
https://github.com/crytic/slither
https://github.com/pessimistic-io/slitherin
https://marketplace.visualstudio.com/items?itemName=trailofbits.slither-vscod
e
https://github.com/marketplace/actions/slither-action

68

https://github.com/crytic/slither
https://github.com/pessimistic-io/slitherin
https://marketplace.visualstudio.com/items?itemName=trailofbits.slither-vscode
https://marketplace.visualstudio.com/items?itemName=trailofbits.slither-vscode
https://github.com/marketplace/actions/slither-action

Semgrep
Semgrep is a versatile, open-source static analysis tool that enables developers
to write and run custom code patterns on their codebase. Unlike traditional
linters or static analysis tools that come with predefined rules, Semgrep allows
users to define their own rules using the same syntax as the code they're
analyzing. This makes it particularly powerful for identifying complex code
patterns, anti-patterns, or security vulnerabilities specific to a project or
organization.

With support for multiple languages, including Solidity and Python, Semgrep
can be integrated into CI/CD pipelines, ensuring that code reviews are
automated and potential issues are flagged before they make it to production.

Note: Semgrep has a cloud platform that can be used on-line and a paid
version that performs more in-depth analysis, but here we will cover the free
version that you can run locally.

Installation
Semgrep can be installed locally using multiple package managers:

For macOS
brew install semgrep

For Ubuntu/WSL/Linux/macOS
python3 -m pip install semgrep

You can also use Docker to run semgrep locally without installation:

To try Semgrep without installation run via Docker
docker run --rm -v "${PWD}:/src" returntocorp/semgrep semgrep

Usage
Semgrep has a registry that includes different packs of rules. In order to use
the built-in solidity rules, run the following command:

semgrep scan --config r/solidity --no-git-ignore contracts/*

Here is an output example:

69

Findings:

test.sol

solidity.best-practice.use-abi-encodecall-instead-of-encodewi
thselector.use-abi-encodecall-

instead-of-encodewithselector
To guarantee arguments type safety it is recommended

to use `abi.encodeCall` instead of
`abi.encodeWithSelector`.
Details: https://sg.run/9K1y

12┆ (success, data) =
collection.call(abi.encodeWithSelector(ITest.divide.selector,
(a, b)));

⋮┆--
30┆ (bool status,) = transferManager.call(
31┆ abi.encodeWithSelector(
32┆

managerSelectorOfAssetType[assetType].selector,
33┆ collection,
34┆ sender,
35┆ recipient,
36┆ itemIds,
37┆ amounts
38┆)
39┆);

Ran 49 rules on 1 file: 2 findings.

You can also use other, not official, rules provided by external teams. Here is
an example how to use cloned repo by Decurity (see links below):

semgrep scan --config
<PATH-TO-DIR-WITH-REPO>/semgrep-smart-contracts/solidity/*.ya
ml --no-git-ignore contracts/*

We also encourage you to write your own, internal rules based on the bugs
you find internally.

Last, but not least, it is again recommended to create a GitHub action that will
execute semgrep with predefined rules (possibly multiple runs) on each pull
request commit.

70

Link
https://semgrep.dev/
https://github.com/returntocorp/semgrep
https://semgrep.dev/r
https://github.com/Decurity/semgrep-smart-contracts
https://github.com/Decurity/compound-semgrep-rules
https://github.com/Decurity/semgrep-rules

Echidna
Echidna is a sophisticated fuzzing tool tailored for testing Ethereum smart
contracts. It employs property-based testing to automatically generate inputs
that probe contracts for vulnerabilities and unexpected behaviors.

Instead of writing traditional unit tests, developers define properties that the
contract should always uphold, and Echidna attempts to find counterexamples
that violate these properties. This approach is particularly effective for
discovering edge cases that manual testing or static analysis might overlook.

By integrating Echidna into the development and auditing workflow, Ethereum
developers can gain increased confidence in the robustness and security of
their smart contracts, ensuring that they can withstand a myriad of inputs and
scenarios once deployed on the blockchain.

Installation
Prerequisites: Before you install Echidna, make sure you have Slither installed.
It is described above.
Echidna can be either downloaded as statically linked binaries for Linux or
MacOS from the releases page or installed using Homebrew:

brew install echidna

You can also use Docker to run echidna without installation:

docker run --rm -it -v `pwd`:/src
ghcr.io/crytic/echidna/echidna

71

https://semgrep.dev/
https://github.com/returntocorp/semgrep
https://semgrep.dev/r
https://github.com/Decurity/semgrep-smart-contracts
https://github.com/Decurity/compound-semgrep-rules
https://github.com/Decurity/semgrep-rules

Usage
The core Echidna functionality is an executable called echidna, which takes a
contract and a list of invariants (properties that should always remain true) as
input.

Invariants are expressed as Solidity functions with names that begin with
echidna_, have no arguments, and return a boolean. For example, if you have
some balance variable that should never go below 20, you can write an extra
function in your contract like this one:

function echidna_check_balance() public returns (bool) {
return(balance >= 20);

}

Here is a full example contract (available here):

contract Test {
event Flag(bool);

bool private flag0 = true;
bool private flag1 = true;

function set0(int val) public returns (bool){
if (val % 100 == 0)

flag0 = false;
}

function set1(int val) public returns (bool){
if (val % 10 == 0 && !flag0)

flag1 = false;
}

function echidna_alwaystrue() public returns (bool){
return(true);

}

function echidna_revert_always() public returns (bool){
revert();

}

function echidna_sometimesfalse() public returns (bool){
emit Flag(flag0);
emit Flag(flag1);
return(flag1);

}

72

}

To run it, you should execute:

echidna tests/solidity/basic/flags.sol

Here is the output:

The echidna fuzzing tests are the part of all project’s tests, next to unit tests.
Therefore, whenever you run tests locally, you should include echidna tests.

Link
https://github.com/crytic/echidna
https://github.com/crytic/echidna/blob/master/tests/solidity/basic/flags.sol
https://github.com/Uniswap/v3-core/tree/main/contracts/test

Foundry fuzzer
Foundry is a smart contract development toolchain, which manages your
dependencies, compiles your project, runs tests, deploys, and lets you interact
with the chain from the command-line and via Solidity scripts.

73

https://github.com/crytic/echidna
https://github.com/crytic/echidna/blob/master/tests/solidity/basic/flags.sol
https://github.com/Uniswap/v3-core/tree/main/contracts/test

In this section we will focus on Foundry tests, specifically fuzzing tests as it
was getting more and more popular recently.

Installation
Precompiled binaries are available from the GitHub releases page. However,
these are better managed by using Foundryup, which is the Foundry toolchain
installer.

Open your terminal and run the following command:

curl -L https://foundry.paradigm.xyz | bash

This will install Foundryup, then simply follow the instructions on-screen, which
will make the foundryup command available in your CLI.

Running foundryup by itself will install the latest (nightly) precompiled binaries:
forge, cast, anvil, and chisel.

foundryup

Usage
Even though Foundry provides a wide variety of development tools, here we are
focusing on the tests, specifically fuzzing. The simple fuzzing tests are very
similar to typical unit tests in Foundry.

Here is a simple unit test in Foundry that checks whether the balances are
correct before and after withdrawing from the safe contract.

function test_Withdraw() public {
payable(address(safe)).transfer(1 ether);
uint256 preBalance = address(this).balance;
safe.withdraw();
uint256 postBalance = address(this).balance;
assertEq(preBalance + 1 ether, postBalance);

}

Here is the same test but in the form of a fuzzing test.

function testFuzz_Withdraw(uint256 amount) public {

74

vm.assume(amount > 0.1 ether);
payable(address(safe)).transfer(amount);
uint256 preBalance = address(this).balance;
safe.withdraw();
uint256 postBalance = address(this).balance;
assertEq(preBalance + amount, postBalance);

}

There are 3 differences:
● name of the function,
● added parameter (this is fuzzed by Foundry),
● added a condition that will accept only those values for amount that are

greater than 0.1 Ether.

To run both of these kinds of tests, you must run the following command
(assuming the tests are in SimpleTest.t.sol file):

forge test --fuzz-runs 10000 -vv --mp test/SimpleTest.t.sol

The above example is a simple fuzzing test, however Foundry also supports two
other types, that is invariant fuzzing and differential fuzzing. These are worth
checking in the Foundry book.

Invariant tests are simple functions with names starting with invariant_ that
always return boolean and are asserted after each function call is made. Here
is a simple conditional (checked only if the protocolCondition is false) invariant:

function invariant_example() external {
if (protocolCondition) return;

assertEq(val1, val2);
}

Differential tests compare the result of a tested function with another -
assumed to be correct - function. Here is a simple example for checking custom
Merkle tree implementation against OpenZeppelin’s implementation:

import
"openzeppelin-contracts/contracts/utils/cryptography/MerklePr
oof.sol";
//...

75

function testCompatibilityOpenZeppelinProver(bytes32[] memory
_data, uint256 node) public {

vm.assume(_data.length > 1);
vm.assume(node < _data.length);
bytes32 root = m.getRoot(_data);
bytes32[] memory proof = m.getProof(_data, node);
bytes32 valueToProve = _data[node];
bool murkyVerified = m.verifyProof(root, proof,

valueToProve);
bool ozVerified = MerkleProof.verify(proof, root,

valueToProve);
assertTrue(murkyVerified == ozVerified);

}

Similarly to the previous section, Foundry fuzzing tests are the part of all
project’s tests, next to unit tests. Therefore, whenever you run tests locally, you
should include fuzzing tests.

Link
https://github.com/foundry-rs/foundry
https://book.getfoundry.sh/
https://www.rareskills.io/post/foundry-testing-solidity
https://www.rareskills.io/post/invariant-testing-solidity

ACTIONS TO IMPLEMENT:
Learn & try tools: Go through the descriptions of all tools and try them in
your project to find out the most comfortable for you.

Share knowledge: Add the descriptions of tools to the internal
Knowledge Base and ask new developers to get familiar with that.

Add tools to CI/CD: Use GitHub Actions for the tools that have them
mentioned in the description.

Extend your Knowledge Base: Build your own rules and detectors used
by the automatic tools.

Estimate costs: Use the metric tools to get familiar with the codebase
size and complexity. That will help you estimate the potential cost of
security reviews.

76

https://github.com/foundry-rs/foundry
https://book.getfoundry.sh/
https://www.rareskills.io/post/foundry-testing-solidity
https://www.rareskills.io/post/invariant-testing-solidity

Focus on invariants: Identify invariants when designing the protocol.
They are gonna be great inputs for invariant fuzz testing.

77

Common Smart Contract Vulnerabilities

DESCRIPTION:
Smart contracts, pivotal in the Web3 landscape, are susceptible to several
common vulnerabilities. Much like the Pareto principle, where 80% of effects
come from 20% of causes, diligently addressing these vulnerabilities can
mitigate a large portion of potential threats. As smart contracts become more
prevalent, awareness and mitigation of these vulnerabilities are paramount.

The goal of this chapter is to learn how to avoid common vulnerabilities.

Price oracle manipulation
A price manipulation attack occurs when an actor intentionally alters the price
of an asset on a decentralized exchange or oracle to benefit from trades or
contracts that rely on that price. By exploiting vulnerabilities or using large
trades, the attacker can skew the price temporarily, execute favorable trades or
trigger specific contract conditions, and then return the price to its normal
range, securing a profit in the process. Such attacks underscore the importance
of robust and tamper-proof price oracles and liquidity in decentralized
platforms.

Ironically, this is a relatively rarely described vulnerability even though it is the
most common and appearing on everyone's lips.

The causes of the price manipulation might be the following:
1. Spot Price: When the oracle calculates the price based on current values

(e.g., reserves) that can be easily changed (e.g., using large swap, like in
case of Uniswap), it is very easy to imbalance those values and shift the
price. The effect can be maximized with flash loans.

78

2. Shallow Liquidity: When a decentralized exchange (DEX) or a liquidity
pool has low liquidity, it's easier for an attacker to move the price with a
relatively small amount of capital.

3. Reliance on Single Oracle: If a smart contract or a platform relies on a
single price oracle, it becomes a point of vulnerability. An attacker can
manipulate or spoof this oracle to feed incorrect price data.

4. Delayed Oracle Updates: Contracts that rely on oracles which update
prices infrequently can be exploited. If there's a significant delay, the
oracle might be out of sync with real market prices, allowing attackers to
capitalize on the discrepancy.

5. Centralized Points of Control: Some "decentralized" platforms might still
have centralized components or admin keys that can influence prices. If
these are compromised, prices can be manipulated.

Example
Let's consider a scenario where a smart contract determines the price of an
asset based on the ratio of assets in a liquidity pool, similar to how automated
market makers (AMMs) like Uniswap work. In this example, the price is derived
from the ratio of two assets in a liquidity pool, and an attacker can manipulate
the price by adding or removing assets from the pool.

Warning: This example has other vulnerabilities and is just a simplified version
of the price manipulable contracts.

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract SimpleAMM {
uint256 public tokenA; // e.g., ETH
uint256 public tokenB; // e.g., DAI

// Users can add liquidity to the pool
function addLiquidity(uint256 amountA, uint256 amountB)

external {
tokenA += amountA;
tokenB += amountB;

}

79

// Users can remove liquidity from the pool
function removeLiquidity(uint256 amountA, uint256

amountB) external {
require(tokenA >= amountA && tokenB >= amountB, "Not

enough liquidity");
tokenA -= amountA;
tokenB -= amountB;

}

// Get the price of tokenA in terms of tokenB
function getPriceOfTokenA() external view returns

(uint256) {
return tokenB / tokenA; // This is a simplified price

calculation
}

}

contract VulnerableContract {
SimpleAMM public amm;

uint256 public thresholdPrice = 100; // Example threshold
price in terms of tokenB

constructor(address _amm) {
amm = SimpleAMM(_amm);

}

function executeTrade() external {
uint256 currentPrice = amm.getPriceOfTokenA();
if (currentPrice > thresholdPrice) {

// Execute some logic, e.g., sell tokenA
}

}
}

An attacker can manipulate the price of tokenA by adding or removing large
amounts of tokenA or tokenB to or from the SimpleAMM pool. By skewing the
ratio of the assets, they can influence the price returned by getPriceOfTokenA()
and potentially trigger the executeTrade function in the VulnerableContract
under false pretenses.

In real-world AMMs, the price calculation is more complex and involves
additional factors, but the principle remains: the price is influenced by the ratio
of assets in the pool, and large trades or liquidity actions can move the price.

80

Moreover, another common example is when the oracle calculates the prices
based on the current balances of the tokens. The attacker can then simply
transfer the token to the oracle to skew the ratio.

How to be safe?
Here are some strategies to mitigate such attacks:

1. Use Time-Weighted Average Prices (TWAP): Instead of relying on the spot
price, which can be easily manipulated with a single large trade, use the
average price over a period of time. This makes it more costly and
difficult for an attacker to manipulate the price.

2. Multiple Oracles: Instead of relying on a single source of truth, use
multiple oracles or price feeds and take an average or median. This
reduces the risk associated with any single oracle being manipulated.

3. Slippage Protection: Implement slippage protection in your smart
contracts. This means that a trade will only go through if the price
slippage (the difference between the expected price and the price at
which the trade is executed) is below a certain threshold.

4. Volume Limits: Implement limits on the volume of trades relative to the
liquidity pool's size. This can prevent large trades from causing drastic
price changes.

5. Circuit Breakers: Similar to traditional financial markets, implement
mechanisms that can pause trading or certain contract functions if
abnormal price movements are detected.

6. Regular Monitoring and Alerts: Set up monitoring tools to track abnormal
price movements, large trades, or sudden liquidity changes. Immediate
alerts can help in taking quick actions.

7. Decentralized Oracles: Consider using decentralized oracle networks,
which aggregate data from multiple sources, reducing the risk of price
manipulation.

81

Arithmetic errors
Arithmetic bugs are common vulnerabilities in programming, and in the context
of web3 and smart contracts, they can have severe financial implications. Here
are some of the arithmetic bugs that can occur in web3:

1. Integer Overflow: This occurs when an arithmetic operation results in a
number larger than the maximum size the variable can hold. In Solidity, if
a uint256 variable reaches its maximum value and you add any positive
integer to it, it will wrap around to zero. This is currently checked in
Solidity (starting from 0.8 version) and the transaction reverts, but there
are cases where this check is not present, e.g., when you cast uint256 to
uint8 or when you explicitly insert your code in the unchecked block.

2. Integer Underflow: The opposite of overflow, this happens when an
arithmetic operation results in a number smaller than the minimum size
the variable can hold. For a uint256 in Solidity, subtracting from zero will
wrap around to its maximum possible value. Similarly to overflows, it is
currently checked in Solidity (starting from 0.8 version) but there are
cases when it still happens.

3. Rounding Errors: When performing division or other operations that result
in fractional values, rounding can lead to small discrepancies. Over many
transactions, these can accumulate or be exploited. It is particularly
important to correctly handle the divisions where the numerator might
be lower than the denominator, because the result of that operation
would be zero.

4. Mismatched orders of magnitude: Discrepancies in the expected scale or
unit of a value, often leading to significant errors in calculations or
operations. A common source of mismatched orders of magnitude arises
from different tokens having different decimal precisions.

5. Reordering of Operations: Due to the commutative property of addition
and multiplication, the order in which operations are performed can
affect the result, especially when combined with other arithmetic bugs.
Particularly important is the ordering of multiplication and division, the
former should be executed first to keep the precision because the
division in Solidity is the integer division (without the remaining).

82

Example
Suppose you're building a smart contract that accepts both ETH and an ERC-20
token (let's call it TOKEN). ETH has a precision of 18 decimals, which means 1 ETH
is represented as 10^18 wei. On the other hand, TOKEN is designed with only 6
decimals of precision.

Now, imagine a function in the contract that's supposed to swap 1 ETH for an
equivalent amount of TOKEN based on a 1:1000 price ratio.

pragma solidity ^0.8.0;

interface IERC20 {
function transferFrom(address sender, address recipient,

uint256 amount) external returns (bool);
function transfer(address recipient, uint256 amount)

external returns (bool);
}

contract TokenSwap {
address public owner = msg.sender;
IERC20 public token;

constructor(address _tokenAddress) {
token = IERC20(_tokenAddress);

}

function swapEthForToken() external payable {
require(msg.value == 1 ether, "Send exactly 1 ETH");

// Expected: Send 1000 TOKENs for 1 ETH
// But due to mismatched decimals, this will actually

send 0.001 TOKENs
token.transferFrom(owner, msg.sender, 1000);

}
}

In the above contract, the swapEthForToken function expects the user to send
exactly 1 ETH. In return, it tries to send 1000 TOKENs. However, due to the
mismatch in decimals, it will actually send only 0.001 TOKENs, which is not the
intended behavior.
To fix this, the contract should account for the decimal difference:

83

function swapEthForToken() external payable {
require(msg.value == 1 ether, "Send exactly 1 ETH");

// Adjust for the decimal difference
uint256 tokenAmount = 1000 * 10**6; // 10^6 for 6

decimals
token.transferFrom(owner, msg.sender, tokenAmount);

}

How to be safe?
Here are some strategies to mitigate such attacks:

1. Explicit Checks: Always check for potential overflows, underflows, and
other arithmetic anomalies before performing operations. For instance,
before subtracting, check if the value being subtracted is less than or
equal to the original value.

2. Thorough Testing: Ensure that your smart contract is rigorously tested.
Include edge cases, such as maximum and minimum input values, to test
for potential overflows and underflows.

3. Explicit Rounding: When performing operations that might result in
fractional values, decide explicitly how to handle the rounding (e.g.,
always round down, always round up, or round to the nearest value).
Document this choice and ensure it's consistently applied.

4. Keep Precision: When doing division operations remember to make sure
that any multiplications were executed before and if there is a possibility
that the numerator might be lower than the denominator, add
multiplication by some power of 10 (e.g., 10^4) and divide by the same
value at the end of operations.

Reentrancy
Reentrancy vulnerability arises when external contract calls are allowed to be
made before a function completes its execution. In such scenarios, the called
contract can call back into the calling contract before the first function call is
finished. This recursive behavior can lead to unintended consequences, such as
funds being withdrawn multiple times. The most infamous exploitation of this
vulnerability was the DAO attack in 2016, where an attacker drained tens of

84

millions of dollars worth of Ether by repeatedly calling a function before the
original call could update the contract's state.

A specific and quite novel version of the reentrancy vulnerability is the
read-only reentrancy. In this case the called contract calls back a function that
does not change the state - a view function that usually is not protected from
reentrancy. The most common case of read-only reentrancy is the Curve pool
that protects add_liquidity and remove_liquidity functions but does not protect
get_virtual_price view function. See the second example below to understand
the consequences.

Example
Here is the simplest and most classic example of a reentrancy bug often
demonstrated using a vulnerable Ether "withdraw" function in a smart contract.

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

contract VulnerableBank {
mapping(address => uint256) public balances;

function deposit() external payable {
balances[msg.sender] += msg.value;

}

function withdraw() external {
uint256 amount = balances[msg.sender];
require(msg.sender.call{value: amount}(""),

"Withdrawal failed");

// Update balance only after sending Ether
balances[msg.sender] = 0;

}
}

In this example, the withdraw function first sends Ether to the msg.sender and
then sets their balance to zero. This is vulnerable to reentrancy because the
external contract can call withdraw again before the first call has finished,
effectively draining more Ether than they should be able to.

85

On the other hand, the get_virtual_price function in some Curve Finance pools is
a classic example of a read-only reentrancy vulnerability. This function is
intended to provide a view of the virtual price of the pool's assets, but it can be
influenced by preceding state-changing operations within the same
transaction.

Here's a simplified example to illustrate the vulnerability:

pragma solidity ^0.8.0;

interface ICurvePool {
function remove_liquidity(uint256 _amount, uint256[]

calldata min_amounts) external;
function get_virtual_price() external view returns

(uint256);
}

contract LendingProtocol {
ICurvePool public curvePool;
mapping(address => uint256) public userCollateral;

constructor(address _curvePool) {
curvePool = ICurvePool(_curvePool);

}

function depositCollateral(uint256 curveLPTokenAmount)
external {

uint256 collateralValue = curveLPTokenAmount *
curvePool.get_virtual_price();

userCollateral[msg.sender] += collateralValue;
}

}

contract Attacker {
ICurvePool curvePool;
LendingProtocol lendingProtocol;

constructor(address _curvePool, address _lendingProtocol)
{

curvePool = ICurvePool(_curvePool);
lendingProtocol = LendingProtocol(_lendingProtocol);

}

function attack(uint256 amount, uint256[] calldata
min_amounts) external {

// Remove liquidity from the Curve pool
curvePool.remove_liquidity(amount, min_amounts);

86

}

function fallback() {
// During the removing liquidity from Curve, the

lending protocol queries
// the get_virtual_price which might be inconsistent

due to the ongoing
// remove_liquidity transaction
lendingProtocol.depositCollateral(100 ether);

}
}

In this scenario:
1. The attacker initiates the attack by calling the attack function, which

removes liquidity from the Curve pool.
2. The Curve pool, when removing liquidity, might have a mechanism to call

back to the attacker's contract (this happens when the user withdraws
Ether).

3. During this callback (fallback function), the attacker makes the lending
protocol query the get_virtual_price.

4. Since the Curve pool's remove_liquidity transaction hasn't fully settled,
the get_virtual_price might return an interim or inconsistent value.

5. The attacker exploits this inconsistency to manipulate the perceived
value of their collateral in the lending protocol.

How to be safe?
Protecting against reentrancy and read-only reentrancy vulnerabilities requires
a combination of coding best practices, design patterns, and external
safeguards. Here are some strategies to mitigate these risks:

1. Checks-Effects-Interactions Pattern: Always update the state variables
before making external calls. This ensures that even if a reentrancy
occurs, the contract's state is consistent. There might be cases where it
is not achievable and those should be covered by case-by-case
consultations.

87

2. Reentrancy Guard: Use a mutex or a state variable to lock the contract's
state while it's performing critical operations. OpenZeppelin's
ReentrancyGuard is a popular choice for this.

3. Reviewing External Protocols: Many vulnerabilities arise when two (or
more) separate protocols are integrated. You should check whether the
other protocol that you integrate with is vulnerable to read-only
reentrancy and that risk is present in your protocol as well.

Unsafe external call
Unsafe external calls are a significant security concern in smart contract
development, particularly in the Ethereum ecosystem. These vulnerabilities
arise when a contract makes calls to external contracts or addresses in an
unsafe manner, without adequate checks or protective measures (e.g. lack of
checks on the callee and calldata).

The external called contract could be malicious and execute operations that
compromise the calling contract's integrity. For example, it could trigger
reentrancy attacks, manipulate state variables, or cause the calling contract to
get stuck in an indefinite loop.

An unsafe delegatecall can be particularly devastating, as it executes the code
of another contract within the context of the calling contract, including its
storage. If the target contract of the delegatecall contains malicious code, it
could overwrite crucial storage variables or manipulate the contract logic in the
calling contract. In the worst-case scenario, this could lead to the
self-destruction of the contract or the permanent locking of its funds.

Example
One of many examples could be an abuse of token approvals. Let's consider a
simplified example where a user approves a contract that has an unsafe
external call. This contract also has a function that calls transferFrom on a
token contract. An attacker can exploit this to drain tokens from the user's
account.

88

pragma solidity ^0.8.0;

contract VulnerableContract {
ERC20 public token;
address public owner;

constructor(address _token) {
token = ERC20(_token);
owner = msg.sender;

}

function unsafeExternalCall(address to, bytes calldata
data) external {

require(msg.sender == owner, "Only owner can call");

// Unsafe external call
(bool success,) = to.call(data);
require(success, "External call failed");

}

function withdrawTokens(address to, uint256 amount)
external {

require(token.transferFrom(msg.sender, to, amount),
"Transfer failed");

}
}

In this example:
1. The VulnerableContract has an unsafeExternalCall function that makes

an external call without any checks on what the external contract might
do.

2. Users approve VulnerableContract to spend tokens on their behalf using
the ERC-20 approve function.

3. The attacker calls unsafeExternalCall, passing in the address of the token
and data that represents a call to transferFrom function with the victim’s
address as from, attacker’s address as to and the amount approved by
the victim as amount, effectively transferring the approved tokens to the
attacker's address.

This example demonstrates how an attacker can exploit unsafe external calls in
a contract that users have approved to interact with their tokens.

89

How to be safe?
Here are some strategies to mitigate this vulnerability:

1. Validation: If that’s possible, and in most cases it should be, make sure
that your contract can call only approved contracts and that the function
to be called is explicitly specified.

2. Trust: Only interact with well-audited, reputable external contracts. If you
must interact with an unknown contract, ensure you have adequate
checks and validations.

3. Least privilege: If you need to allow calls to untrusted contracts, make
sure that the contract that makes that call is not privileged and does not
hold any funds.

4. Sanity Checks: Before making a delegatecall, perform checks to ensure
that the target contract's code is as expected (e.g., check contract
bytecode, use a registry of trusted contracts).

5. Self-destruction: Make sure you never allow to delegatecall to untrusted
contracts and that they do not have a self-destruct functionality.

Insufficient Access control
Insufficient access control is a critical vulnerability in smart contracts that can
lead to unauthorized actions. This flaw occurs when a contract fails to properly
restrict who can execute certain functions.

Without adequate access controls, malicious actors can exploit the contract to
perform actions like changing ownership, withdrawing funds, or altering key
parameters, all of which should typically be restricted to certain roles like the
contract owner or authorized administrators.

The consequences can range from financial loss to complete loss of control over
the contract.

Example
Let's consider an example involving a smart contract that manages a
decentralized organization (DAO) with multiple roles: owner, admin, and

90

member. The contract has a vulnerability in its access control that allows
anyone to elevate their role.

pragma solidity ^0.8.0;

contract VulnerableDAO {
address public owner;
mapping(address => bool) public admins;
mapping(address => bool) public members;

constructor() {
owner = msg.sender;

}

// Only owner should be able to add or remove admins, but
this is not enforced

function setAdmin(address account, bool status) public {
admins[account] = status;

}

// Only admins should be able to add or remove members,
but this is not enforced

function setMember(address account, bool status) public {
members[account] = status;

}

function withdrawFunds() public {
require(msg.sender == owner || admins[msg.sender],

"Not authorized");
payable(msg.sender).transfer(address(this).balance);

}

// Other functions that should be restricted to specific
roles
}

In this example, the setAdmin and setMember functions are supposed to be
restricted to certain roles (owner for setAdmin and admin for setMember), but
they are improperly designed, allowing anyone to elevate their role.

To fix this vulnerability, the setAdmin and setMember functions should include
require statements to ensure that only authorized roles can change the status.

91

How to be safe?
Here are some strategies to help secure your smart contracts:

1. Use Libraries: Utilize well-audited libraries like OpenZeppelin's
AccessControl to manage roles and permissions.

2. Access Control Matrix: Prepare a matrix of roles and functionalities in the
system to mark which roles are allowed to perform specific operations.

3. Least Privilege Principle: Assign only the permissions that are necessary
for each role. Avoid giving full control unless absolutely necessary.

4. Robust access control mechanism: Select a proper one, such as
role-based access control (RBAC), to enforce expected behavior and
maintain control over business flows and handled data.

5. Custom Modifiers: Create custom function modifiers that check the
sender's permissions before executing the function.

6. Explicit Checks: Always include explicit require statements to check
permissions at the beginning of functions.

Unchecked low-level calls

Unchecked low-level calls in smart contracts refer to the use of low-level
methods like .call(), .delegatecall(), or .staticcall() without proper validation or
error handling. These low-level calls are more flexible but also more dangerous
than their high-level counterparts, such as .transfer() or .send().
When a low-level call fails, it doesn't automatically throw an exception; instead,
it returns a boolean value (false) to indicate failure. If the contract doesn't
check this return value, the contract may continue executing as if the call were
successful, leading to unexpected behavior or vulnerabilities.

Example
Below is a simple example of a smart contract that uses an unchecked
low-level .call() to send Ether. If the .call() fails, the contract does not check the
return value, leading to a vulnerability. In this example, the contract has a
balance mapping that tracks the Ether balance of each user.

92

pragma solidity ^0.8.0;

contract VulnerableBalanceTracker {
mapping(address => uint256) public balance;

function deposit() public payable {
balance[msg.sender] += msg.value;

}

function withdrawFunds(uint256 amount) public {
require(balance[msg.sender] >= amount, "Insufficient

balance");

// Unchecked low-level call
(bool success,) = msg.sender.call{value:

amount}("");

// Additional logic after the call
// This will execute even if the call fails
balance[msg.sender] -= amount;

}
}

If there was a situation when the transfer call fails the withdrawFunds function
would continue to execute, reducing the attacker's balance in the contract even
though no Ether was actually sent. The user would lose their Ether because
they would not be able to withdraw more than the stored balance.

How to be safe?
The way to protect from unchecked low-level calls is quite straightforward.
Always check the boolean return value when using low-level .call(),
.delegatecall(), or .staticcall() methods. If you do not need to use those
functions directly, consider using libraries that check the return value by
default.

Front running
In a front-running attack, a malicious actor observes a pending transaction and
quickly submits another transaction with a higher gas fee, aiming to get it
included in the blockchain before the original transaction.

93

In addition to front-running, other related attack vectors like back-running and
sandwich attacks also exploit the public nature of blockchain transactions.
Back-running involves an attacker placing a transaction immediately after a
targeted transaction in the same block, aiming to benefit from the state
changes made by the targeted transaction. For instance, if a user triggers a
function that increases the price of a token, a back-runner could place a sell
order to immediately capitalize on the price increase.

Sandwich attacks are more complex and involve an attacker placing
transactions both before and after a targeted user's transaction. In a typical
sandwich attack on a decentralized exchange, the attacker first buys the token
to increase its price (the "front" of the sandwich), waits for the targeted user's
transaction to execute at this inflated price, and then sells the token to
decrease its price (the "back" of the sandwich), profiting from the price
differences.

Example
Below is an example of a decentralized exchange (DEX) contract that sets the
token price based on reserves of Ether and tokens. It also includes a slippage
protection mechanism. However, it's still simplified and vulnerable to
front-running and sandwich attacks.

pragma solidity ^0.8.0;

interface IERC20 {
function transfer(address recipient, uint256 amount)

external returns (bool);
function transferFrom(address sender, address recipient,

uint256 amount) external returns (bool);
function balanceOf(address account) external view returns

(uint256);
}

contract VulnerableDEX {
IERC20 public token;
uint256 public etherReserve;
uint256 public tokenReserve;

constructor(address _token, uint256 _initialTokenReserve)

94

{
token = IERC20(_token);
tokenReserve = token.balanceOf(address(this));
etherReserve = msg.value;

}

function getPrice() public view returns (uint256) {
return etherReserve / tokenReserve;

}

function buyTokens(uint256 maxSlippage) public payable {
uint256 initialPrice = getPrice();
uint256 tokenAmount = msg.value / initialPrice;
uint256 newPrice = (etherReserve + msg.value) /

(tokenReserve - tokenAmount);

require(tokenAmount <=
token.balanceOf(address(this)), "Not enough tokens in
contract");

require(newPrice <= initialPrice * (100 +
maxSlippage) / 100, "Slippage too high");

// Update reserves
etherReserve += msg.value;
tokenReserve -= tokenAmount;

// Transfer tokens to the buyer
token.transfer(msg.sender, tokenAmount);

}

// Other functions like sellTokens, addLiquidity, etc.
}

An attacker can observe a pending buyTokens transaction and place two
transactions: one before and one after the targeted transaction. The first
transaction could buy tokens to artificially inflate the price, and the second
transaction could sell them to profit from the price difference.

The slippage protection mechanism in the provided DEX contract example is
designed to ensure that the price movement caused by a user's trade does not
exceed their specified tolerance (i.e., the maxSlippage). However, this protection
doesn't prevent sandwich attacks, because the price movement is checked
against the price at the beginning of the user's trade. It doesn't account for
price manipulations that occur immediately before or after the user's

95

transaction. In a sandwich attack, the attacker's transactions temporarily
manipulate the price, but the user's slippage protection doesn't detect or
prevent this.

How to be safe?
Protecting against front-running and sandwich attacks requires a combination
of design patterns, platform-level solutions, and user awareness. Here are
some strategies to help secure smart contracts against these types of attacks:

1. Slippage protection: When a user initiates a trade, instead of (or in
addition to) specifying a slippage percentage, they specify the minimum
amount of tokens they are willing to receive in return for their trade. If
the actual amount of tokens they would receive falls below this
threshold due to price changes, the transaction is automatically reverted.
This value would be calculated on the front-end side and accepted by the
user.

2. Commit-Reveal Schemes: Implement a two-phase commit-reveal
mechanism. Users first commit to a transaction without revealing the
specifics. After a certain number of blocks, they reveal the transaction
details, and the transaction is executed. This approach makes it difficult
for attackers to front-run a transaction since they won't know the
specifics until the reveal phase.

3. Time-Weighted Average Price (TWAP): Instead of executing trades at
current market prices, use a time-weighted average price over a longer
period. This reduces the profitability of short-term price manipulations.

4. User Education: Educate users about the risks of front-running and
sandwich attacks. Encourage them to use lower slippage tolerances and
to be cautious during times of high network congestion.

ACTIONS TO IMPLEMENT:
Read materials: Go through the resources to learn what are the common
vulnerabilities and how to fix them.

96

Share knowledge: Add the descriptions of common vulnerabilities and
their mitigations to the internal Knowledge Base and ask new developers
to get familiar with that.

Try it for yourself: Create contracts that are vulnerable to learnt common
vulnerabilities and try to fix them manually.

Schedule peer reviews: Add reviewers to Pull Requests that will mainly
focus on detecting the common vulnerabilities to let your team train
their skill.

READ MORE:
● The role of access control
● SCSVS KNOWN ATTACKS
● DASP TOP 10
● SWC Registry

97

https://composable-security.com/blog/the-role-of-access-control-in-solidity-smart-contracts/
https://github.com/ComposableSecurity/SCSVS/blob/master/1.2/0x22-V13-Known-Attacks.md
https://dasp.co/
https://swcregistry.io/

Smart Contract Security Verification Standard

DESCRIPTION:
Smart Contract Security Verification Standard (v2) is a checklist created to
standardize the security of smart contracts for developers, architects, security
reviewers, and vendors. This list helps to avoid the majority of known security
problems and vulnerabilities by guiding during every stage of the development
cycle of smart contracts (from design to implementation).

A member of your team or an external auditor can go through check after check
and give you clear information about the status of your project.

98

99

Additionally, you can calculate your security score and see the areas that are
worth taking care of.

GOAL:
Building security by design and expanding the list of attack vectors

100

PROS:
● comprehensive security coverage of the whole development process
● knowledge of what exactly was covered during the review
● free if used internally
● developing high-quality code
● a very wide and updated threat database

CONS:
● requires intensive workshop
● requires to gather team from different departments
● requires appropriate competences to verify certain attack vectors

WHEN:
At all stages, from design to post-deployment. Ideally as:

● source of threats for threat modeling sessions
● full coverage - before release of major change
● selected coverage - before releasing new components or integrating with

a new protocol

ACTIONS TO IMPLEMENT:
Find the Right Team Member: Select a team member that will be
responsible for SCSVS compliance. ideally, that would be the Security
Champion selected before.

Schedule internal audits: Decide when to conduct an internal audit and
save that date.

Audit your components: Verify the security checks from the general and
component categories.

Audit your integrations: When you are implementing integration with
some external protocol, verify the security checks from the particular
integrations category.

Check compliance: Check whether the protocols that you integrate with
are compliant with SCSVS.

101

RESOURCES:
https://github.com/ComposableSecurity/SCSVS/

102

https://github.com/ComposableSecurity/SCSVS/

Secure Protocol Upgrades

DESCRIPTION:
The ability to update business logic, parameters and expand the architecture of
a project based on smart contracts is one of the areas particularly exposed to
various risks. During the update, in addition to the many benefits and
opportunities they bring, bugs that were not previously present in contracts
may be introduced.

It is worth mentioning that the upgradeability is also considered antithetical to
Web3, and by some, it is considered to be a vulnerability itself. However, it has
also helped to fix some projects and protect funds.

GOAL:
Perform a secure upgrade that does not change the logic unexpectedly and do
not introduce security bugs.

PROS:
● covers upgradeability risks
● low cost and effort
● reusable

CONS:
● needs time to implement
● usually touches whole protocol

WHEN:
Before the release of the new version.

103

ACTIONS TO IMPLEMENT:
Use existing code: There are production-ready libraries and
packages (see references) that can help build upgradeable contracts
with many potential security risks covered.

Create upgrade tests: Create the test cases that verify whether the
storage layout and business logic was not changed unexpectedly
after the upgrade. Test it on the local mainnet fork.

SCSVS G3: Upgradeability: Check compliance with the G3:
Upgradeability category.

READ MORE:
SCSVS G3: Upgradeability
OpenZeppelin: Upgrades

104

https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x103-G3-Upgradeability.md
https://docs.openzeppelin.com/upgrades

105

We hope that after reading our guide, you now have a broader
perspective and understanding of how much can be done to minimize
risks.

Security is too important to treat it as an unpleasant obligation. If
you think about your project in the long term, don't let anyone hinder
your plans due to negligence that can be avoided.

As Composable Security, we will help you take care of your smart
contract security and prioritize activities.

We offer:
● Smart contract audits
● Security consultations
● Threat modeling
● Security overviews and more!

Contact us and let's start improving your security.
https://composable-security.com/contact

106

https://composable-security.com/contact

P.S.

If you haven't found something in this guide that you think will be
useful to others, please contact us.

We plan to develop this project further.

Thank you for your time, now get to work.

107

mailto:info@composable-security.com

